Pertanyaan

Diketahui fungsi kundrat f(x)=x^2+x+1 Kurva fungsi f(x) memiliki kondisi

Solusi

Terverifikasi Ahli
4.7 (214 Suara)
Ritam ahli ยท Tutor selama 3 tahun

Jawaban

**Kurva fungsi \( f(x) = x^2 + x + 1 \) memiliki sifat-sifat berikut:- Tidak memiliki akar-akar real (akar imajiner).- Grafik berupa parabola yang membuka ke atas.- Titik puncaknya adalah \( \left(

Penjelasan

**Fungsi kuadrat \( f(x) = x^2 + x + 1 \) adalah fungsi polinomial derajat dua. Bentuk umum dari fungsi kuadrat adalah , di a \), , dan adalah konstanta, dan .Untuk fungsi \( f(x) = x^2 + x + 1 \):- Koefisien - Koefisien - Konstanta Kondisi atau sifat-sifat dari fungsi kuadrat ini dapat dianalisis sebagai berikut:1. **Akar-akar Imajiner:** Fungsi kuadrat \( f(x) = x^2 + x + 1 \) tidak memiliki akar-akar diskriminannya ( ) kurang dari nol. Karena , maka akar-akarnya adalah imajiner.2. **Sifat Grafik:** Grafik dari fungsi kuadrat \( f(x) = x^2 + x + 1 \) adalah parabola yang membuka ke atas karena koefisien (yaitu 1) positif.3. **Titik Puncak:** Titik puncak dari parabola dapat ditemukan menggunakan rumus: Substitusi nilai dan : Untuk menemukan ordinat titik puncak, substitusi ke dalam fungsi: Jadi, titik puncaknya adalah \( \left( -\frac{1}{2}, \frac{1}{4} \right) \). **Nilai Minimum:** Karena parabola membuka ke atas, nilai minimum dari fungsi terjadi di titik puncak. Nilai minimumnya adalah .**