Pertanyaan
Show from the power series (8.1) that 1 e^z_(1)cdot e^z_(2)=e^z_(1+z_(2)) 2 (d)/(dz)e^z=e^z
Jawaban
1. e^(z₁)*e^(z₂) = e^(z₁+z₂)
Power Series Representation:
The power series representation of the exponential function is:
```
e^z = 1 + z + (z^2)/2! + (z^3)/3! + ... = Σ (z^n)/n!
```
where the summation (Σ) goes from n = 0 to infinity.
Proof:
1. Expand e^(z₁) and e^(z₂):
```
e^(z₁) = 1 + z₁ + (z₁^2)/2! + (z₁^3)/3! + ...
e^(z₂) = 1 + z₂ + (z₂^2)/2! + (z₂^3)/3! + ...
```
2. Multiply the series:
To multiply these infinite series, we need to consider all possible combinations of terms. This is a bit tedious to write out fully, but the pattern becomes clear:
```
e^(z₁) * e^(z₂) = (1 + z₁ + (z₁^2)/2! + ...) * (1 + z₂ + (z₂^2)/2! + ...)
```
Expanding this, we get terms like:
* 1 * 1
* 1 * z₂
* z₁ * 1
* z₁ * z₂
* (z₁^2)/2! * 1
* (z₁^2)/2! * z₂
* ... and so on.
3. Collect terms with the same power of (z₁ + z₂):
Notice that terms like z₁ * z₂ and z₂ * z₁ both contribute to the coefficient of (z₁ + z₂)^2. Similarly, terms like (z₁^2)/2! * 1, (z₁^2)/2! * z₂, z₁ * (z₂^2)/2!, and (z₂^2)/2! * 1 all contribute to the coefficient of (z₁ + z₂)^3.
In general, the coefficient of (z₁ + z₂)^n will be the sum of all terms where the powers of z₁ and z₂ add up to n. This is exactly the same as the coefficient of z^n in the expansion of e^(z₁ + z₂).
4. Conclusion:
Therefore, the product of the power series for e^(z₁) and e^(z₂) is identical to the power series for e^(z₁ + z₂). This proves the identity:
```
e^(z₁) * e^(z₂) = e^(z₁ + z₂)
```
2. d/dz e^z = e^z
Proof:
1. Differentiate the power series term by term:
```
d/dz (e^z) = d/dz (1 + z + (z^2)/2! + (z^3)/3! + ...)
```
Since differentiation is a linear operation, we can differentiate each term individually:
```
d/dz (e^z) = 0 + 1 + 2z/2! + 3z^2/3! + ...
```
2. Simplify:
Notice that the derivative of (z^n)/n! is (n*z^(n-1))/n! = z^(n-1)/(n-1)!. This means the derivative of the power series is:
```
d/dz (e^z) = 1 + z + (z^2)/2! + (z^3)/3! + ...
```
3. Recognize the result:
The result is exactly the same as the original power series for e^z. Therefore:
```
d/dz (e^z) = e^z
```
Key Points:
* The power series representation of the exponential function is a powerful tool for proving its properties.
* The ability to differentiate and multiply power series term by term is essential for these proofs.
* These properties are fundamental to the understanding and application of the exponential function in mathematics, physics, and other fields.
Pertanyaan Panas lebih
Jika f(x)=2-x,g(x)=x+1 dan h(x)=3x maka nilai (hcirc gcirc f)(x)=ldots . 9-x 3x+6 9-3x 6-3x :x+9 Diketahui fungsi f(x)=2x+3 dan g x (x)=3x-12 . Fungsi
Diketahui f:Rarrow R dirumuuskan oleh f(x)=(x+2)/(x-3),xneq 3 Hasil dari f^-1(x) adalah __
a dan b adalah kontanta dalam persamaan ax^3-6x^2+2ax-3b=0 Jika jumlah akar- akarnya 3 dan hasil kali akar - akanya 6. maka nilai a+b adalah __
3. Periksalah kekontinuan dari fungsi berikut: f(x)= ) 9-3x,&xlt 2 2&,&x=2 2x-1&,xgt 2
SOAL NO . 4 Nilai suku banyak x^5-x^3+7x+12 untuk x=-2 adalah __ A. -26 C. 22 E. 66 B. -22 D. 26 A B C D E
Modus dari data skor tersebut adalah ... __ (pembulatan satu desimal) A. 61,3 D. 65,6 B. 62,8 E. 66,2 C. 64,1 a. Perhatikan tabel berikut. Kelas Freku
8. - (y^-3cdot y^4)/(y^8)= __
( ( Soal ))/(20^circ) mathrm(e)=(10)/(12)( )^circ mathrm(R) 20^circ mathrm(e)=(12)/(10)( )^circ mathrm(F) 20^circ mathrm(e)=ldots( )^circ mathrm(K) 30
Variabel acak Z b erdistribusi Normal standar . Tentukan k sedemikian hingga a P(klt Zlt -0.5)=0.3197 b P(0.1lt Zlt k)=0.5213
Diketahui fungs: f(x)=-3 x-5 [ f(x)=x^2-2 x+1 ] tentukan Rightarrow a (f circ g)(x) [ ( b. )(g circ f)(x) ]
3. Gambarlah Kubus ABCD EFGH dengani panjang sisi 6 cm .Tentukan jarak antara titik E dengan bidang AFH
3. Tuliskan bilangan-bilangan berikut ini dalam bentuk baku! a. 0,00000056 b. 120.000 .000.000 Jawab: ...................
1. Bentuk segerhana ((x^2 y^-1)/(x^-1) y^(2))^2
2. Fungsi y=9x^2-12x+6 adalah hasil transformasi dilatasi sejajar sumbux dengan skala k dari fungsi y=x^2-4x+6 Tentukan skala k.
Perhatikan himpunan pasangan terurut berikut (1,2),(2,2),(3,2),(4,2) (ii) (1,4),(1,6),(3,5),(4,7) (iii) (1,4),(2,5),(3,6),(4,7) (iv) (p,5),(q,6),