AI Jawab Pertanyaan_Asisten Tugas Terbaik AI Online | Question AI
Beranda / Matematika / Show from the power series (8.1) that 1 e^z_(1)cdot e^z_(2)=e^z_(1+z_(2)) 2 (d)/(dz)e^z=e^z

Pertanyaan

Show from the power series (8.1) that 1 e^z_(1)cdot e^z_(2)=e^z_(1+z_(2)) 2 (d)/(dz)e^z=e^z
zoom-out-in

Show from the power series (8.1) that 1 e^z_(1)cdot e^z_(2)=e^z_(1+z_(2)) 2 (d)/(dz)e^z=e^z

Tampilkan lebih banyak
83
Jawaban
4.4 (267 suara)
avatar
Jhalak elit · Tutor selama 8 tahun

Jawaban

Let's break down how to demonstrate these properties of the exponential function using its power series representation.

1. e^(z₁)*e^(z₂) = e^(z₁+z₂)

Power Series Representation:

The power series representation of the exponential function is:

```
e^z = 1 + z + (z^2)/2! + (z^3)/3! + ... = Σ (z^n)/n!
```

where the summation (Σ) goes from n = 0 to infinity.

Proof:

1. Expand e^(z₁) and e^(z₂):

```
e^(z₁) = 1 + z₁ + (z₁^2)/2! + (z₁^3)/3! + ...
e^(z₂) = 1 + z₂ + (z₂^2)/2! + (z₂^3)/3! + ...
```

2. Multiply the series:

To multiply these infinite series, we need to consider all possible combinations of terms. This is a bit tedious to write out fully, but the pattern becomes clear:

```
e^(z₁) * e^(z₂) = (1 + z₁ + (z₁^2)/2! + ...) * (1 + z₂ + (z₂^2)/2! + ...)
```

Expanding this, we get terms like:

* 1 * 1
* 1 * z₂
* z₁ * 1
* z₁ * z₂
* (z₁^2)/2! * 1
* (z₁^2)/2! * z₂
* ... and so on.

3. Collect terms with the same power of (z₁ + z₂):

Notice that terms like z₁ * z₂ and z₂ * z₁ both contribute to the coefficient of (z₁ + z₂)^2. Similarly, terms like (z₁^2)/2! * 1, (z₁^2)/2! * z₂, z₁ * (z₂^2)/2!, and (z₂^2)/2! * 1 all contribute to the coefficient of (z₁ + z₂)^3.

In general, the coefficient of (z₁ + z₂)^n will be the sum of all terms where the powers of z₁ and z₂ add up to n. This is exactly the same as the coefficient of z^n in the expansion of e^(z₁ + z₂).

4. Conclusion:

Therefore, the product of the power series for e^(z₁) and e^(z₂) is identical to the power series for e^(z₁ + z₂). This proves the identity:

```
e^(z₁) * e^(z₂) = e^(z₁ + z₂)
```

2. d/dz e^z = e^z

Proof:

1. Differentiate the power series term by term:

```
d/dz (e^z) = d/dz (1 + z + (z^2)/2! + (z^3)/3! + ...)
```

Since differentiation is a linear operation, we can differentiate each term individually:

```
d/dz (e^z) = 0 + 1 + 2z/2! + 3z^2/3! + ...
```

2. Simplify:

Notice that the derivative of (z^n)/n! is (n*z^(n-1))/n! = z^(n-1)/(n-1)!. This means the derivative of the power series is:

```
d/dz (e^z) = 1 + z + (z^2)/2! + (z^3)/3! + ...
```

3. Recognize the result:

The result is exactly the same as the original power series for e^z. Therefore:

```
d/dz (e^z) = e^z
```

Key Points:

* The power series representation of the exponential function is a powerful tool for proving its properties.
* The ability to differentiate and multiply power series term by term is essential for these proofs.
* These properties are fundamental to the understanding and application of the exponential function in mathematics, physics, and other fields.
Apakah jawabannya membantu Anda?Silakan beri nilai! Terima kasih

Pertanyaan Panas lebih lebih

Jika f(x)=2-x,g(x)=x+1 dan h(x)=3x maka nilai (hcirc gcirc f)(x)=ldots . 9-x 3x+6 9-3x 6-3x :x+9 Diketahui fungsi f(x)=2x+3 dan g x (x)=3x-12 . Fungsi

Diketahui f:Rarrow R dirumuuskan oleh f(x)=(x+2)/(x-3),xneq 3 Hasil dari f^-1(x) adalah __

a dan b adalah kontanta dalam persamaan ax^3-6x^2+2ax-3b=0 Jika jumlah akar- akarnya 3 dan hasil kali akar - akanya 6. maka nilai a+b adalah __

3. Periksalah kekontinuan dari fungsi berikut: f(x)= ) 9-3x,&xlt 2 2&,&x=2 2x-1&,xgt 2

SOAL NO . 4 Nilai suku banyak x^5-x^3+7x+12 untuk x=-2 adalah __ A. -26 C. 22 E. 66 B. -22 D. 26 A B C D E

Modus dari data skor tersebut adalah ... __ (pembulatan satu desimal) A. 61,3 D. 65,6 B. 62,8 E. 66,2 C. 64,1 a. Perhatikan tabel berikut. Kelas Freku

8. - (y^-3cdot y^4)/(y^8)= __

( ( Soal ))/(20^circ) mathrm(e)=(10)/(12)( )^circ mathrm(R) 20^circ mathrm(e)=(12)/(10)( )^circ mathrm(F) 20^circ mathrm(e)=ldots( )^circ mathrm(K) 30

Variabel acak Z b erdistribusi Normal standar . Tentukan k sedemikian hingga a P(klt Zlt -0.5)=0.3197 b P(0.1lt Zlt k)=0.5213

Diketahui fungs: f(x)=-3 x-5 [ f(x)=x^2-2 x+1 ] tentukan Rightarrow a (f circ g)(x) [ ( b. )(g circ f)(x) ]

3. Gambarlah Kubus ABCD EFGH dengani panjang sisi 6 cm .Tentukan jarak antara titik E dengan bidang AFH

3. Tuliskan bilangan-bilangan berikut ini dalam bentuk baku! a. 0,00000056 b. 120.000 .000.000 Jawab: ...................

1. Bentuk segerhana ((x^2 y^-1)/(x^-1) y^(2))^2

2. Fungsi y=9x^2-12x+6 adalah hasil transformasi dilatasi sejajar sumbux dengan skala k dari fungsi y=x^2-4x+6 Tentukan skala k.

Perhatikan himpunan pasangan terurut berikut (1,2),(2,2),(3,2),(4,2) (ii) (1,4),(1,6),(3,5),(4,7) (iii) (1,4),(2,5),(3,6),(4,7) (iv) (p,5),(q,6),