Menentukan Rasio dan Suku ke-3 dalam Deret Geometri 1+2+4+...

4
(280 votes)

Dalam matematika, deret geometri adalah deret bilangan dimana setiap suku dihasilkan dengan mengalikan suku sebelumnya dengan suatu bilangan tetap yang disebut rasio. Dalam artikel ini, kita akan membahas deret geometri 1+2+4+... dan menentukan rasio serta suku ke-3 dalam deret ini. Deret geometri 1+2+4+... dapat dituliskan dalam bentuk umum sebagai a, ar, ar^2, ar^3, ... , dimana a adalah suku pertama, r adalah rasio, dan n adalah suku ke-n dalam deret. Untuk menentukan rasio, kita dapat membagi suku kedua dengan suku pertama. Dalam hal ini, suku pertama adalah 1 dan suku kedua adalah 2. Jadi, rasio deret ini adalah 2/1 = 2. Selanjutnya, untuk menentukan suku ke-3 dalam deret ini, kita dapat menggunakan rumus umum suku ke-n dalam deret geometri, yaitu an = ar^(n-1). Dalam hal ini, n adalah 3, a adalah suku pertama (1), dan r adalah rasio (2). Dengan menggantikan nilai-nilai ini ke dalam rumus, kita dapat menghitung suku ke-3 sebagai berikut: a3 = 1 * 2^(3-1) = 1 * 2^2 = 1 * 4 = 4 Jadi, suku ke-3 dalam deret geometri 1+2+4+... adalah 4. Dalam kesimpulan, deret geometri 1+2+4+... memiliki rasio 2 dan suku ke-3 adalah 4. Dengan menggunakan rumus umum suku ke-n dalam deret geometri, kita dapat dengan mudah menentukan suku apa pun dalam deret ini.