Menentukan Luas Daerah yang Dibatasi oleh Kurva $y=3+2x-x^{2}$

4
(258 votes)

Dalam artikel ini, kita akan membahas tentang bagaimana menentukan luas daerah yang dibatasi oleh kurva $y=3+2x-x^{2}$. Luas daerah ini dapat dihitung dengan menggunakan integral. Mari kita lihat langkah-langkahnya. Langkah pertama adalah menentukan titik potong antara kurva dengan sumbu-x. Untuk mencari titik potong, kita setel $y$ menjadi $0$ dan selesaikan persamaan $0=3+2x-x^{2}$. Setelah kita menyelesaikan persamaan ini, kita akan mendapatkan dua titik potong, yaitu $x_1$ dan $x_2$. Selanjutnya, kita perlu menentukan batas-batas integral. Batas bawah integral akan menjadi $x_1$ dan batas atas integral akan menjadi $x_2$. Dengan menggunakan batas-batas ini, kita dapat menghitung integral dari kurva $y=3+2x-x^{2}$. Setelah kita menghitung integral, kita akan mendapatkan luas daerah yang dibatasi oleh kurva $y=3+2x-x^{2}$. Luas daerah ini akan menjadi hasil akhir dari perhitungan kita. Dalam artikel ini, kita telah membahas tentang bagaimana menentukan luas daerah yang dibatasi oleh kurva $y=3+2x-x^{2}$. Kita telah melihat langkah-langkah yang diperlukan untuk menghitung luas daerah ini menggunakan integral. Semoga artikel ini bermanfaat dan membantu Anda memahami konsep ini dengan lebih baik.