Menentukan Panjang Sisi Terpendek Segitig
Dalam matematika, segitiga adalah salah satu bentuk geometri yang paling umum. Segitiga memiliki tiga sisi dan tiga sudut. Setiap segitiga memiliki panjang sisi-sisi yang berbeda-beda. Dalam artikel ini, kita akan membahas tentang bagaimana menentukan panjang sisi terpendek dari sebuah segitiga berdasarkan informasi yang diberikan. Dalam soal ini, kita diberikan informasi tentang panjang sisi-sisi segitiga. Sisi pertama memiliki panjang $2x$, sisi kedua memiliki panjang $10-x$, dan sisi ketiga memiliki panjang $3x-8$. Kita juga diberikan informasi bahwa keliling segitiga ini adalah 26 cm. Untuk menentukan panjang sisi terpendek dari segitiga ini, kita perlu menggunakan persamaan keliling segitiga. Keliling segitiga adalah jumlah panjang semua sisinya. Dalam kasus ini, kita dapat menulis persamaan keliling segitiga sebagai berikut: $2x + (10-x) + (3x-8) = 26$ Kita dapat menyederhanakan persamaan ini dengan menggabungkan variabel x: $2x + 10 - x + 3x - 8 = 26$ Kemudian, kita dapat menggabungkan suku-suku yang sama: $4x + 2 = 26$ Selanjutnya, kita dapat memindahkan konstanta ke sisi lain persamaan: $4x = 26 - 2$ $4x = 24$ Terakhir, kita dapat mencari nilai x dengan membagi kedua sisi persamaan dengan 4: $x = \frac{24}{4}$ $x = 6$ Setelah menemukan nilai x, kita dapat menggantikan nilai x ke dalam persamaan panjang sisi-sisi segitiga untuk menentukan panjang sisi-sisi tersebut. Sisi pertama memiliki panjang $2x$, sehingga panjangnya adalah $2 \times 6 = 12$ cm. Sisi kedua memiliki panjang $10-x$, sehingga panjangnya adalah $10 - 6 = 4$ cm. Sisi ketiga memiliki panjang $3x-8$, sehingga panjangnya adalah $3 \times 6 - 8 = 10$ cm. Dengan demikian, panjang sisi terpendek dari segitiga ini adalah 4 cm.