Pertanyaan

1. ( )^2 log 16-( )^3 log 27+( )^5 log 1 2. ( )^3 log 81+( )^3 log 9-( )^3 log 27 3. ( )^2 log 12+( )^2 log 4-( )^2 log 36+2 log 6 4. ( )^2 log 9 cdot( )^9 log 6 cdot( )^6 log 16 5( )^6 log 12+( )^6 log 3= 6. 10 log 1.000+5 log 25-6 log 1 7. ( )^5 log 8+(1)/(16 log 4) 8( )^3 log 7 cdot( )^7 log 27+(1)/(8 log 2)

Solusi

Terverifikasi Ahli
4.2 (389 Suara)
Yuvansh master · Tutor selama 5 tahun

Jawaban

【Explanation】: This question is a logarithmic expression simplification problem. The properties of logarithms are used to simplify the expression. The properties of logarithms are as follows:1. logb(mn) = logb(m) + logb(n)2. logb(m/n) = logb(m) - logb(n)3. logb(m^n) = n * logb(m)Given the expression log1g1+2logy-3log33l+2logy+logg12+6log3, we can apply the properties of logarithms to simplify it.First, we can rewrite the expression as follows:log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6Next, we can combine the terms with the same base:log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3Finally, we can apply the properties of logarithms to simplify the expression:log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12 + 6log3 = log1g1 + logy^2 - log33l^3 + logy^2 + logg12 + log3^6 = log1g1 + 2logy - 3log33l + 2logy + logg12