Pertanyaan
((36 p^3 r^-2)/(3^2) p^(5 r^-5))^6
Solusi
Jawaban
{Penjelasan: Untuk menyelesaikan masalah ini, kita perlu menggabungkan istilah di penyebut dan pembilang, dan kemudian mengangkat hasilnya ke pangkat 6.Langkah 1: Menggabungkan istilah di penyebut dan pembilangPertama, kita dapat menggabungkan istilah di penyebut dan pembilang dengan menggunakan aturan pangkat:\[\frac{36p^{3}c^{-2}}{3^{2}p^{5}c^{-5}} = \frac{36p^{3}c^{-2}}{3^{2}p^{5}c^{-5}} = \frac{36p^{3}c^{-2}}{9p^{5}c^{-5}} = \frac{4p^{-2}c^{-2}}{p^{-5}c^{-5}} = \frac{4p^{-2}}{p^{-5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}} = \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p^{5}}= \frac{4p^{3}}{p