Pertanyaan

Current Attempt in Progress Solve the following linear system by Gaussian elimination. x_(1)+3x_(2)+4x_(3)=9 -x_(1)-4x_(2)+5x_(3)=9 3x_(1)-7x_(2)+6x_(3)=15 x_(1)=i x_(2)=i x_(3)=i

Solusi

Terverifikasi Ahli
4.4 (161 Suara)
Sakina profesional ยท Tutor selama 6 tahun

Jawaban

To solve the given linear system using Gaussian elimination, we need to follow these steps:1. Write the augmented matrix for the system.2. Perform row operations to get an upper triangular form (row echelon form).3. Solve for the variables using back-substitution.Given system: ### Step 1: Write the augmented matrix ### Step 2: Perform row operations to get an upper triangular form#### Row 1 (R1): \( (1, 3, 4, |, 9) \)#### Row 2 (R2): \( (-14, 5, |, 9) \)#### Row 3 (R3): \( (3, -7, 6, |, 15) \)**Operation 1:** Add R1 to R2 **Operation 2:** Subtract 3 times R1 from R3 **Operation 3:** Add 16 times R2 to R3 ### Step 3: Solve for the variables using back-substitutionFrom the third row: Substitute into the second row: Substitute and into the first row: ### Solution: