Pertanyaan

emodul.bimbelnurulfikri.id/b D Grafik parabola P berbentuk y=ax^(2)+b memotong sumbu y negatif, apakah a lebih dari 0 ? Putuskan apakah pernyataan (1) dan (2) berikut cukup untuk menjawab pertanyaan tersebut. (1) Grafik P melalui titik (1,-3) . (2) Grafik P memotong sumbu x negatif. A. Pernyataan (1) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (2) SAJA tidak cukup. B. Pernyataan (2) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (1) SAJA tidak cukup.

Solusi

Terverifikasi Ahli
4.1 (257 Suara)
Hadi Rahman master ยท Tutor selama 5 tahun

Jawaban

A

Penjelasan

1. The equation of the parabola is given as . We need to determine whether .2. If the parabola intersects the negative y-axis, it means the y-intercept (value of when ) is negative. This gives us . However, this information alone does not tell us anything about the value of .3. Statement (1): The graph of P passes through the point (1,-3). Plugging this into the equation, we get: \(-3 = a(1^2) + b\). This gives us one equation, but we need another equation to solve for both and .4. Statement (2): The graph of P intersects the negative x-axis. This means the x-intercepts (values of when ) are negative. For a parabola of the form , if it intersects the negative x-axis, then must be positive. This is because a positive value results in a parabola that opens upwards, and if it intersects the negative x-axis, then it must also intersect the negative y-axis. Therefore, this statement alone is sufficient to conclude that .5. Combining the information from both statements, we can conclude that statement (1) alone is not sufficient to answer the question, but statement (2) alone is sufficient. Therefore, the correct answer is option B.