Menemukan Luas Daerah yang Diwarnai
Pendahuluan: Dalam masalah geometri ini, kita diberikan panjang $AB=10$ cm, $OA=30$ cm, dan sudut $AOD=60^\circ$. Tugas kita adalah menemukan luas daerah yang diwarnai. Dalam bagian ini, kita akan menggunakan prinsip-prinsip dasar geometri untuk menyelesaikan masalah ini.
Bagian 1: Menggunakan Teorema Pythagoras
Dengan menggunakan teorema Pythagoras, kita dapat menemukan panjang $OD$. Teorema Pythagoras menyatakan bahwa dalam segitiga siku-siku, kuadrat dari sisi miring (sisi yang ditemukan) sama dengan jumlah dari kuadrat sisi-sisi lainnya. Dalam kasus ini, kita memiliki $OA=30$ cm dan $AB=10$ cm, sehingga kita dapat menulis:
$OD^2 = OA^2 - AB^2$
$OD^2 = 30^2 - 10^2$
$OD^2 = 900 - 100$
$OD^2 = 800$
$OD = \sqrt{800}$
$OD = 20$ cm
Sekarang kita tahu panjang $OD$, kita dapat melanjutkan untuk menemukan luas daerah yang diwarnai.
Bagian 2: Menghitung Luas Daerah yang Diwarnai
Untuk menemukan luas daerah yang diwarnai, kita perlu menghitung luas segitiga $AOD$. Luas segitiga dapat dihitung dengan menggunakan rumus:
$Luas = \frac{1}{2} \times basis \times tinggi$
Dalam kasus ini, basis segitiga adalah $OD$ dan tingginya adalah $OA$. Jadi, kita dapat menulis:
$Luas = \frac{1}{2} \times OD \times OA$
$Luas = \frac{1}{2} \times 20 \times 30$
$Luas = 300$ cm persegi
Jadi, luas daerah yang diwarnai adalah 300 cm persegi.
Bagian 3: Kesimpulan
Dalam masalah ini, kita menggunakan teorema Pythagoras untuk menemukan panjang $OD$, dan kemudian menghitung luas segitiga $AOD$ untuk menemukan luas daerah yang diwarnai. Proses ini menunjukkan bagaimana kita dapat menggunakan prinsip-prinsip dasar geometri untuk menyelesaikan masalah yang melibatkan panjang, sudut, dan luas.