Menentukan Koordinat Titik Potong Antara Dua Garis
Dalam matematika, koordinat titik potong antara dua garis dapat ditentukan dengan menggunakan sistem persamaan linear. Dalam kasus ini, kita akan mencari koordinat titik potong antara garis \(2x-y=0\) dan garis \(x+y+6=0\). Untuk menentukan koordinat titik potong, kita perlu mencari nilai x dan y yang memenuhi kedua persamaan tersebut secara bersamaan. Pertama, mari kita ubah kedua persamaan menjadi bentuk yang lebih sederhana. Pertama-tama, mari kita ubah persamaan pertama menjadi bentuk \(y=2x\). Dengan melakukan ini, kita dapat menggantikan nilai y dalam persamaan kedua dengan \(2x\), sehingga kita mendapatkan persamaan baru: \(x+2x+6=0\). Kemudian, kita dapat menggabungkan kedua suku x menjadi \(3x+6=0\). Dengan mengurangi 6 dari kedua sisi persamaan, kita mendapatkan \(3x=-6\). Selanjutnya, dengan membagi kedua sisi persamaan dengan 3, kita dapat menentukan nilai x: \(x=-2\). Setelah mengetahui nilai x, kita dapat menggantikan nilai x dalam salah satu persamaan awal untuk mencari nilai y. Mari kita gunakan persamaan pertama: \(2(-2)-y=0\). Dengan menyederhanakan persamaan ini, kita mendapatkan \(-4-y=0\). Dengan mengurangi -4 dari kedua sisi persamaan, kita mendapatkan \(y=-4\). Jadi, koordinat titik potong antara garis \(2x-y=0\) dan garis \(x+y+6=0\) adalah (-2, -4).