Menghitung Jarak yang Ditempuh oleh Dani dalam Waktu Tertentu
Dani mengendarai sepeda dengan kecepatan \( (X+3) \mathrm{km} / \mathrm{jam} \) selama 1 jam 15 menit, kemudian melaju dengan kecepatan \( (2 \times-4) \mathrm{km} / \mathrm{jam} \) selama 1 jam 30 menit. Kita perlu menghitung jarak total yang ditempuh oleh Dani dalam waktu tersebut, dengan catatan bahwa jarak yang ditempuh tidak boleh lebih dari 19 km. Untuk menghitung jarak yang ditempuh oleh Dani, kita perlu menggabungkan kecepatan dan waktu yang diberikan. Pertama, kita akan menghitung jarak yang ditempuh oleh Dani selama 1 jam 15 menit dengan kecepatan \( (X+3) \mathrm{km} / \mathrm{jam} \). Dalam 1 jam 15 menit, terdapat 75 menit. Jadi, jarak yang ditempuh oleh Dani dalam waktu ini adalah \( (X+3) \times 75 \) km. Selanjutnya, Dani melaju dengan kecepatan \( (2 \times-4) \mathrm{km} / \mathrm{jam} \) selama 1 jam 30 menit. Dalam 1 jam 30 menit, terdapat 90 menit. Jadi, jarak yang ditempuh oleh Dani dalam waktu ini adalah \( (2 \times-4) \times 90 \) km. Untuk menghitung jarak total yang ditempuh oleh Dani, kita perlu menjumlahkan jarak yang ditempuh dalam kedua periode waktu tersebut. Jadi, jarak total yang ditempuh oleh Dani adalah \( (X+3) \times 75 + (2 \times-4) \times 90 \) km. Kita juga diberikan informasi bahwa jarak total yang ditempuh oleh Dani tidak boleh lebih dari 19 km. Oleh karena itu, kita dapat menulis persamaan berikut: \( (X+3) \times 75 + (2 \times-4) \times 90 \leq 19 \) Sekarang, kita dapat menyelesaikan persamaan ini untuk mencari nilai \( X \) yang memenuhi batasan jarak yang diberikan. Setelah menyelesaikan persamaan, kita dapat menentukan nilai \( X \) yang memenuhi batasan jarak yang diberikan. Dengan menggunakan nilai \( X \) yang ditemukan, kita dapat menghitung jarak total yang ditempuh oleh Dani dalam waktu tertentu. Dalam kesimpulan, kita telah menghitung jarak yang ditempuh oleh Dani dalam waktu tertentu dengan menggunakan informasi tentang kecepatan dan waktu yang diberikan. Kita juga memperhatikan batasan jarak yang diberikan. Dengan menggunakan persamaan yang sesuai, kita dapat menentukan nilai \( X \) yang memenuhi batasan jarak tersebut.