Persamaan Kuadrat dengan Akar -2 dan 9
Persamaan kuadrat adalah salah satu topik yang penting dalam matematika. Dalam artikel ini, kita akan membahas persamaan kuadrat dengan akar -2 dan 9. Kita akan melihat empat opsi persamaan kuadrat yang diberikan dan menentukan persamaan mana yang memiliki akar-akar ini. Opsi a: $x^{2}-7x-18=0$ Opsi b: $x^{2}+7x-18=0$ Opsi c: $x^{2}-11x-18=0$ Opsi d: $x^{2}+11x-18=0$ Untuk menentukan persamaan yang benar, kita perlu menggunakan metode faktorisasi. Pertama, kita perlu mencari dua bilangan yang ketika dijumlahkan akan menghasilkan 7 dan ketika dikalikan akan menghasilkan -18. Dengan mencoba beberapa kombinasi, kita dapat menemukan bahwa bilangan-bilangan ini adalah 9 dan -2. Jadi, persamaan kuadrat yang memiliki akar -2 dan 9 adalah opsi a: $x^{2}-7x-18=0$.