Fungsi Onto, Injektif, dan Bijektif

essays-star 4 (187 suara)

Pendahuluan: Dalam matematika, fungsi dapat diklasifikasikan sebagai onto, injektif, atau bijektif. Dalam artikel ini, kita akan menganalisis fungsi-fungsi yang diberikan dan menentukan apakah mereka merupakan fungsi onto, injektif, atau bijektif.

Bagian:

① Fungsi $f(x)=2x$: Fungsi ini merupakan fungsi onto dan injektif, tetapi bukan bijektif.

② Fungsi $f(x)=^{2}logx$: Fungsi ini bukan fungsi onto, injektif, atau bijektif.

③ Fungsi $f(x)=2^{x}$: Fungsi ini merupakan fungsi onto, injektif, dan bijektif.

④ Fungsi $f(x)=\vert x\vert$: Fungsi ini bukan fungsi onto, injektif, atau bijektif.

⑤ Fungsi $f(x)=x^{2}$: Fungsi ini bukan fungsi onto, injektif, atau bijektif.

⑥ Fungsi $f(x)=sinx$: Fungsi ini merupakan fungsi onto, injektif, tetapi bukan bijektif.

Kesimpulan: Dalam analisis fungsi-fungsi yang diberikan, kita dapat menyimpulkan bahwa fungsi $f(x)=2x$, $f(x)=2^{x}$, dan $f(x)=sinx$ merupakan fungsi onto dan injektif, tetapi hanya fungsi $f(x)=2^{x}$ yang juga merupakan fungsi bijektif.