Memahami Bentuk Desimal dalam Pecahan Bias
Dalam matematika, bentuk desimal sering kali dapat diubah menjadi pecahan biasa. Pecahan biasa adalah bentuk pecahan yang memiliki pembilang dan penyebut. Dalam artikel ini, kita akan membahas bagaimana mengubah bentuk desimal menjadi pecahan biasa dan mengidentifikasi pecahan mana yang sesuai dengan bentuk desimal yang diberikan. Pertama-tama, mari kita lihat contoh pertanyaan yang diberikan: "Bentuk 1,81818181...... bila dinyatakan dalam pecahan biasa adalah a) $\frac {9}{7}$, b) $\frac {16}{9}$, c) $\frac {20}{11}$, atau d) $\frac {40}{33}$." Untuk menjawab pertanyaan ini, kita perlu memahami bagaimana mengubah bentuk desimal menjadi pecahan biasa. Langkah pertama adalah mengidentifikasi pola desimal yang berulang. Dalam contoh ini, kita melihat bahwa angka 81 berulang terus menerus setelah titik desimal. Untuk mengubah desimal ini menjadi pecahan biasa, kita perlu membagi angka berulang ini dengan jumlah angka yang berulang. Dalam kasus ini, kita memiliki dua angka berulang (81), jadi kita akan membagi 81 dengan 2. Hasilnya adalah 40. Jadi, bentuk desimal 1,81818181...... dapat ditulis sebagai $\frac {40}{33}$. Sekarang, mari kita lihat pilihan jawaban yang diberikan. Pilihan a) $\frac {9}{7}$, pilihan b) $\frac {16}{9}$, pilihan c) $\frac {20}{11}$, dan pilihan d) $\frac {40}{33}$. Dari hasil perhitungan sebelumnya, kita dapat melihat bahwa pecahan yang sesuai dengan bentuk desimal yang diberikan adalah pilihan d) $\frac {40}{33}$. Dalam matematika, penting untuk dapat mengubah bentuk desimal menjadi pecahan biasa. Ini membantu kita dalam memahami dan memanipulasi angka dengan lebih baik. Dengan memahami konsep ini, kita dapat dengan mudah mengidentifikasi pecahan mana yang sesuai dengan bentuk desimal yang diberikan. Dalam kesimpulan, bentuk desimal 1,81818181...... dapat ditulis sebagai pecahan biasa $\frac {40}{33}$. Dalam matematika, penting untuk dapat mengubah bentuk desimal menjadi pecahan biasa untuk memahami dan memanipulasi angka dengan lebih baik.