Perubahan Daya Radiasi Benda pada Kenaikan Suhu
Daya radiasi yang dipancarkan oleh suatu benda pada suhu tertentu dapat dihitung menggunakan hukum Stefan-Boltzmann. Hukum ini menyatakan bahwa daya radiasi yang dipancarkan oleh suatu benda berbanding lurus dengan suhu keempat dari benda tersebut. Dalam kasus ini, kita akan menghitung perubahan daya radiasi benda ketika suhu naik dari $227^{\circ }C$ menjadi $727^{\circ }C$. Pada suhu awal $227^{\circ }C$, daya radiasi yang dipancarkan oleh benda adalah $1000J/s$. Untuk menghitung daya radiasi pada suhu akhir $727^{\circ }C$, kita dapat menggunakan persamaan: $P_1 = P_2 \times \left(\frac{T_1}{T_2}\right)^4$ Di mana $P_1$ adalah daya radiasi pada suhu awal, $P_2$ adalah daya radiasi pada suhu akhir, $T_1$ adalah suhu awal, dan $T_2$ adalah suhu akhir. Dengan menggantikan nilai yang diketahui, kita dapat menghitung daya radiasi pada suhu akhir: $P_2 = 1000 \times \left(\frac{727}{227}\right)^4$ Setelah melakukan perhitungan, kita dapat mengetahui bahwa daya radiasi benda pada suhu akhir $727^{\circ }C$ adalah sebesar $xxxx J/s$. Dalam kesimpulan, ketika suhu suatu benda naik dari $227^{\circ }C$ menjadi $727^{\circ }C$, daya radiasi yang dipancarkan oleh benda juga meningkat. Hal ini dapat dijelaskan oleh hukum Stefan-Boltzmann yang menyatakan bahwa daya radiasi berbanding lurus dengan suhu keempat dari benda tersebut. Semakin tinggi suhu benda, semakin besar daya radiasi yang dipancarkan.