AI Jawab Pertanyaan_Asisten Tugas Terbaik AI Online | Question AI
Beranda / Matematika / The first characterization is related to Banach space theory and metric geometry. We say that a norm

Pertanyaan

The first characterization is related to Banach space theory and metric geometry. We say that a normed space (R^n,Vert cdot Vert ) is uniformly
zoom-out-in

The first characterization is related to Banach space theory and metric geometry. We say that a normed space (R^n,Vert cdot Vert ) is uniformly convex (or,more precisely, 2-uniformly conver) if there is a constant Cgeqslant 1 such that Vert (v+w)/(2)Vert ^2leqslant (1)/(2)Vert vVert ^2+(1)/(2)Vert wVert ^2-(1)/(4C)Vert w-vVert ^2 (1.2) for all v, win R^n . Then we have, by recursive applications of (1.2) and the continuity of the norm, the inequality Vert (1-t)v+twVert ^2leqslant (1-t)Vert vVert ^2+tVert wVert ^2-((1-t)t)/(C)Vert w-vVert ^2 (1.3) for all v,win R^n and tin [0,1] Observe that what simply follows from the convexity of the norm is Vert (1-t)v+tw)Vert ^2leqslant (1-t)Vert vVert ^2+tVert wVert ^2 and (1.3) means that Vert cdot Vert possesses a stronger convexity.

Tampilkan lebih banyak
115
Jawaban
4.3 (182 suara)
avatar
Oorja master · Tutor selama 5 tahun

Jawaban

The provided text describes a property of normed spaces called uniform convexity. Let's break down the key concepts and the implications of inequalities (1.2) and (1.3).

1. Normed Spaces: A normed space is a vector space (like Rn) equipped with a norm, denoted ||·||. The norm assigns a non-negative length to each vector, satisfying certain properties (e.g., ||v|| = 0 if and only if v = 0, ||cv|| = |c| ||v|| for any scalar c, and the triangle inequality ||v + w|| ≤ ||v|| + ||w||).

2. Uniform Convexity: A normed space is uniformly convex if there exists a constant C ≥ 1 such that inequality (1.2) holds for all vectors v and w in the space. This inequality strengthens the usual convexity property of the norm. Let's analyze it:

* The left-hand side: ||(v+w)/2||² represents the squared norm of the midpoint between vectors v and w.
* The right-hand side: (1/2)||v||² + (1/2)||w||² is the average of the squared norms of v and w.
* The crucial term: -(1/4C)||w - v||² is a penalty term proportional to the squared distance between v and w. The presence of this term is what distinguishes uniform convexity from ordinary convexity. A larger C implies weaker uniform convexity.

The inequality states that the squared norm of the midpoint is less than or equal to the average of the squared norms, *minus* a term that depends on the distance between the vectors. This means that if v and w are far apart, the norm of their midpoint is significantly smaller than the average of their norms. This implies that the unit sphere in a uniformly convex space is "round" and doesn't have any flat spots.

3. Inequality (1.3): This inequality extends (1.2) to any point on the line segment between v and w, parameterized by t ∈ [0, 1]. It's derived by recursively applying (1.2) and using the continuity of the norm. The interpretation is similar: the squared norm of a point on the line segment is bounded above by a weighted average of the squared norms of the endpoints, minus a term that penalizes the distance between the endpoints.

4. Comparison with Ordinary Convexity: The inequality ||(1-t)v + tw||² ≤ (1-t)||v||² + t||w||² follows from the ordinary convexity of the squared norm. Inequality (1.3) strengthens this by adding the penalty term, highlighting the stronger convexity property of uniformly convex spaces.

In summary: Uniform convexity is a geometric property of normed spaces that implies a stronger form of convexity than the standard definition. It ensures that the unit sphere is "round" and that the norm behaves in a well-behaved manner, which has important implications in various areas of analysis, including optimization and approximation theory. The inequalities (1.2) and (1.3) provide quantitative measures of this stronger convexity.
Apakah jawabannya membantu Anda?Silakan beri nilai! Terima kasih

Pertanyaan Panas lebih lebih

25. Hasil dari (2times 10^3)times (3times 10^4) adalah __ a. 6times 10^7 b 6times 10^6 c 5times 10^7 d. 5times 10^6 a b C d

((36 p^3 r^-2)/(3^2) p^(5 r^-5))^6

6. Jika sebuah set berakhir dengan skor 25-25 maka permainan voli akan dilanjutkan hingga salah satu tim unggul 2 poin benar salah 7. Jumlah pemain da

} R & =sqrt(15001^2)+1400 / 2+2 / 500 / 1400 / cos 60 & =

3. Apakah matriks A dapat dijumlahkan dengan matriks D? Jelaskan!

Tiga bulan lalu Suci menyimpan uangnya dibank sebesar Rp. 1.000.000,00 . Berapa jumlah uang Suci saat ini jika bank memberikan bunga tunggal sebesar 3

9. Suatu segitiga siku-siku memiliki panjang hipotenusa 17 cm dan panjang salah satu sisi tegaknya adalah 15 cm . Panjang sisi tegak lainnya adalah __

Jika a=27 dan b=32 , maka nilai dari 3(a^-(1)/(3))cdot 4b^(2)/(5)= __ __ 2,4,8,16 __ suku ke 10 barisan tersebut adalah __ __ Deret geometri tak hingg

Bentuk sederh ana dari (12x^8y^11)/(4x^6)y^(10)= __

17. (p^x)^y=ldots A. p^xy C. p^x+y B. p^xcdot y D. p^x:y 18. Bentuk sederhana dari (a^6b^6c^6)/(a^2)b^(3c^4) adalah __ A. a^4b^3c^2 C. a^12b^18c^24 B

Mari kita hitung soal selanjutnya. (-a+9b)-(-6a-b)= 7a+10b 5a+8b -7a+8b

Jika f(x)=2x+8 dan g(x)=x^2-2x+1 Maka nilai (fcirc g)(-2) adalah __ A -26 B 26 C -6 D 6 E 10

Jika f(x)=3x+2 dan g(x)=2x-1 maka (f-g)(x) adalah __ A x+3 B x + 1 C x-3 D 5x+1 E 5x-3

Suatu sektor lingkaran dengan sudut pusat 120^circ memiliki jari-jari 14 cm maka luas sektor lingkaran tersebut adalah __ (gunakan pi =22/7 A. 123,2c

Diket f(x)=2 x^2+5 x-3 Dan g(x)=x+5 Tenturan: A. (f+g)(x) B. (f-g)(x) c. {f cdot grangle(x)