Pertanyaan
1 EXAMPLE 9 Define phiZ_(12)rarrZ_(12) by phi(x)=3x . To verify that phi is a homomorphism, we chserve that in Z_(12),3(a+b)=3a+3b (since the group operation is addition modulo 12). Direct calculations show that Ker phi=(0,4,8) . Thus, we know from property 5 of Theorem 10.2 that phi is a 3*10-1 mapping. Since phi(2)=6 , we have by property 6 of Theorem 10.1 that phi^(-1)(6)=2+Ker phi=(2,6,10) . Notice also that (2) is cyclic and phi((2:))=(0,6) is cyclic. Moreover, 12 }=6 and |phi(2)|= |6|=2 , so ∣phi(2) divides |2| in agreement with property 3 of Theorem 10.1. Letting bar(K)=(0,6] , we see that the subgroup phi^(-1)( bar(K))=[0,2,4,6 , 8,10) . This verifies property 7 of Theorem 10.2 in this particular case. The next example illustrates how one can easily determine all homomorphisms from a cyclic group to a cyclic group. EXAMPLE 10 We determine all homomorphisms from Z_(12) to Z_(30) . By property 2 of Theorem 10.1, such a homomorphism is completely specified by the image of 1. That is, if 1 maps to a , then x maps to xa , Lagrange's Theorem and property 3 of Theorem 10.1 require that lai divide both 12 and 30 . So, |a|=1,2,3 , or 6 . Thas, a=0,15,10.20 , 5 , or 25 . This gives us a list of candidates for the homomorphisms. That each of these six possibilities yields an operation-preserving, welldefined function can now be verified by direct calculations. [Note that gcd(12,30)=6 . This is not a coincidence!]
Jawaban
Mathematics
Penjelasan
We are given a series of mathematical statements that refer to group theory, specifically concerning homomorphisms from one group to another.
In the first part (Example 9), it is shown that a function ϕ: Z12 → Z12 sending x to 3x is a homomorphism. To demonstrate this, it is shown that 3(a + b) = 3a + 3b in Z12 where the group operation is addition modulo 12. The kernel of ϕ (Ker ϕ) is given as {0,4,8}, which indicates the elements of Z12 that ϕ sends to 0. Since ϕ(2) = 6, find the inverse image of 6 under ϕ, which is obtained by adding elements of the kernel to 2. This results in ϕ^-1(6) = {2, 6, 10}. Z12 is a cyclic group, and the image of cyclic group Z12 under ϕ is {0,6}, which is also cyclic. The order of 2 in Z12 is 6 and the order of ϕ(2) in Z12 is 2. As property 3 of Theorem 10.1 suggests, the order of ϕ(a) divides the order of a. Letting K={0,6} shows that the preimage of subgroup K under ϕ is {0, 2, 4, 6, 8, 10}, hence satisfying a property (indicated as '?') of Theorem 10.2.
In the second part (Example 10), the task is to find homomorphisms from Z12 to Z30. Property 2 of Theorem 10.1 indicates that a homomorphism is fully defined once the image of the generator 1 is determined. Images of 1 allowed by Lagrange's Theorem and Theorem 10.1, property 3, are those integers a that divide both 12 and 30 - yielding a = 1, 2, 3, or 6. Therefore, the possible images of 1 under these homomorphisms are 0, 15, 10, 20, 5, or 25, allowing for six possible homomorphisms. A further observation is made that gcd(12,30)=6, hinting at a non-coincidental relationship.
Pertanyaan Panas lebih
Nilai sqrt [3](sqrt (207^2times 207^3times 207)) adalah A 107. B 7 207. C 11.449 . C D 42.849 . D E 50.449 .
Pada sebuah kios alat tulis, data penjualan dalam tiga hari adalah sebagai berikut: (1) Hari 1: Terjual 1 lusin buku tulis , empat buah pulpen dan 2 p
Date 2. Gunakan Induksi matematik unluk membukhkan bahwa pernyataan berikut mi berlaku untur seliap bilangan aslin. (1^2+a^2+3^2)/(ldots +n^2);(1)/(6)
Be oceanIonto ((3^-1a^3b^-4)/(2a^-2)b)^-1 GIoIolIoIn __
65. Pada proses penebaran bibit lele,ke dalam kolam kepadatan tebar bibit rele yang dianjurka n adalah 200-400 ekorper meter persegi Jika ada sebuah k
square Siska mengikuti lomba matematika dengan aturan Sebagai berikut square square Jika menang memperoleh scor 3 jika kalah memperoleh Scor negati
Diketahui x=(2)/(7),y=(3)/(5) dan z=(3)/(8) Nilai dari ((7xcdot z)/(y))^2 adalah A (9)/(16) B (16)/(9) C I (16)/(25) D (25)/(16) E I (25)/(49)
9. Ubahlah bentuk (ab^-1-a^-1b)/(b^-1)-a^(-1) dalam bentuk pangkat bulat positif! Jawab: __
f(x)=2 x+1 dan F(x)=2^x-1 square rawaban
No.Soal : 4. Bentuk sederhana dari sqrt (50)-sqrt (18)=... A sqrt (2) B 2sqrt (2) C sqrt (3) D 2sqrt (3)
Sederhanakan bentuk-bentuk berikut kemudian tentukan nilainya. a. sqrt (48) d. sqrt (300) e. sqrt [3](432) b. sqrt (150) f. sqrt [5](64) c. sqrt (1.00
Diketahui x=(2)/(7),y=(3)/(5) dan z=(3)/(8) Urutan pecahan tersebut dari yang terkecil hingga yang terbesar adalah A x,y,z. A B 7 y,z,x. C Z,x,y. C D
Nilai p^3 yang memenuhi persamaan A O. B 1. C I 2. D I 3. E 4.
4. Perhatikan gambar di samping. Jika angle ABE+angle ACE+angle ADE=96^circ maka besar angle AOE adalah __ (A) 140^circ (B) 70^circ (C) 64^circ (D
Ragu Hosil pengurangan A=7x+8y-10 oleh B= -3x-6y+15 adalah A 10x+14y-25 A B 10x-14y+5 C 4x+2y+5 C D 4x-14y-25 D