Pertanyaan
(3sqrt (2)+2sqrt (50)-sqrt (200))/(sqrt (8)sqrt (8)-2sqrt (32))
Jawaban
In the numerator, we have:
$3\sqrt{2} + 2\sqrt{50} - \sqrt{200}$
We can simplify $\sqrt{50}$ by factoring out the perfect square trinomial:
$\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}$
Similarly, we can simplify $\sqrt{200}$ by factoring out the perfect square trinomial:
$\sqrt{200} = \sqrt{100 \cdot 2} = \sqrt{100} \cdot \sqrt{2} = 10\sqrt{2}$
Substituting these simplified terms back into the numerator, we get:
$3\sqrt{2} + 2(5\sqrt{2}) - 10\sqrt{2} = 3\sqrt{2} + 10\sqrt{2} - 10\sqrt{2} = 3\sqrt{2}$
In the denominator, we have:
$\sqrt{8}\sqrt{8} - 2\sqrt{32}$
We can simplify $\sqrt{8}\sqrt{8}$ by recognizing that $\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2}$:
$2\sqrt{8}\sqrt{8} = 2(2\sqrt{2})(2\sqrt{2}) = 8(2) = 16$
Similarly, we can simplify $\sqrt{32}$ by recognizing that $\sqrt{32} = \sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$:
$2\sqrt{32} = 2(4\sqrt{2}) = 8\sqrt{2}$
Substituting these simplified terms back into the denominator, we get:
$2\sqrt{8}\sqrt{8} - 2\sqrt{32} = 16 - 8\sqrt{2} = 16 - 8\sqrt{2}$
Now, we can substitute the simplified numerator and denominator back into the original expression:
$\frac{3\sqrt{2} + 2\sqrt{50} - \sqrt{200}}{\sqrt{8}\sqrt{8} - 2\sqrt{32}} = \frac{3\sqrt{2}}{16 - 8\sqrt{2}}$
To simplify further, we can rationalize the denominator by multiplying both the numerator and denominator by the conjugate of the denominator:
$\frac{3\sqrt{2}}{16 - 8\sqrt{2}} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \frac{3\sqrt{2}}{(16 + 8\sqrt{2})} = \
Pertanyaan Panas lebih
13. pada segitiga ABC, panjang AC=F Panjang BC dan angle A=angle B atau angle CAB=angle ABC Jenis segitiga ABC adalah __ a) segitiga sama sisi b) segi
1 (x^3y^-1z^-2)^5(x^-2y^3z^4)^2 2 (p^2q^-1r^-2)^2(p^-2q^-3r^2)^-2 3 (3a^2b^3c^-1)^2 4. (2^5a^3)/(64^2)a^(5) 5 (a^2b^3c^-1)^2 6 (5sqrt (3))/(sqrt (3)+s
(5) (-7)/(-2-sqrt(5))=
Dari bentuk lo garima {}^2log8=3 kedud lukan 8 adalah seb agai ... bilangan pokok hasil logaritma numerus
Budi sedang menumpuk kursi yang tinggunya masing -masing 45 mathrm(~cm) Tinggi tumpukan dua kursi aduah 50 mathrm(~cm) dan tinggi tumpukan tiga kursi
8. ( )^5 log (32)/(8)-( )^5 log 32-( )^5 log 8=
2. Diketahui kesamaan matriks (} 7&5a-b 2a+3&14 ) Tentukan nilai 5a-b
Diketahui matriks P = P=(} 13&4x-y 2x&-5 ) Jika P^T=Q maka tentukan nilai dari 2x-y
16. Diberikan fungsi f dan g dengan f(x)=2x+1 dan (fcirc g)(x)=(x)/(x+1),xneq 1 maka invers dari fungsi g adalah g^-1(x)= __ A. -(x)/(x-1),xneq 1 B. (
1 uketanai matris elemen pertama b. eien bans kedu Jika tentukan Ordo Diketanui matris tentukan elomen bc duri matns mains buatlah
Bentuk sederhana dari (sqrt (3)xsqrt (27))/(sqrt (9)) adalah __ 9 3 2surd 3 surd 3 5 points
2 hitunglah nllai dari: a. ((1)/(9))^-2+((1)/(6))^-(1)/(3)= b. ((1)/(3))^2 times((1)/(4))^3= c. 5 a+2 b=... Jika a=(1)/(5) dan b=(1)/(2) d. x^2-y^3
A. Pada tahun 2010 Universitas manakah yang memiliki persentase lolos TERTINGGI? A. Universitas M 1030 B. Universitas N C. Universitas P Universitas Q
Tentukan sisi miring dari segitiga siku-siku sika 4 mathrm(~m) alas 4 mathrm(~cm) dan tinggi mathrm(bm)
(frac (3x-2)/(5-32x+1))((2x+1)/(3))x+4