AI Jawab Pertanyaan_Asisten Tugas Terbaik AI Online | Question AI
Beranda / Matematika / Solve the following linear system by Gaussian elimination. x_(1)+3x_(2)+4x_(3)=9 -x_(1)-4x_(2)+5x_(3

Pertanyaan

Solve the following linear system by Gaussian elimination. x_(1)+3x_(2)+4x_(3)=9 -x_(1)-4x_(2)+5x_(3)=9 3x_(1)-7x_(2)+6x_(3)=15 x_(1)=i x_(2)=i x_(3)=i
zoom-out-in

Solve the following linear system by Gaussian elimination. x_(1)+3x_(2)+4x_(3)=9 -x_(1)-4x_(2)+5x_(3)=9 3x_(1)-7x_(2)+6x_(3)=15 x_(1)=i x_(2)=i x_(3)=i

Tampilkan lebih banyak
120
Jawaban
4.2 (265 suara)
avatar
Bhavna elit · Tutor selama 8 tahun

Jawaban

To solve the given linear system using Gaussian elimination, we need to follow these steps:

1. Write the augmented matrix for the system.
2. Perform row operations to get an upper triangular form.
3. Back-substitute to find the solutions.

Given system:
\[
\begin{array}{l}
x_{1} + 3x_{2} + 4x_{3} = 9 \\
-x_{1} - 4x_{2} + 5x_{3} = 9 \\
3x_{1} - 7x_{2} + 6x_{3} = 15
\end{array}
\]

Step 1:
Write the augmented matrix
\[
\begin{pmatrix}
1 & 3 & 4 & | & 9 \\
-1 & -4 & 5 & | & 9 \\
3 & -7 & 6 & | & 15
\end{pmatrix}
\]

Step 2:
Perform row operations to get an upper triangular form

Row 1 (R1) remains the same:


\[
R1 = (1, 3, 4, |, 9)
\]

Eliminate \(x_1\) from Row 2 (R2):


\[
R2 = R2 + R1 = (-1, -4, 5, |, 9) + (1, 3, 4, |, 9) = (0, -1, 9, |, 18)
\]

Eliminate \(x_1\) from Row 3 (R3):


\[
R3 = R3 - 3R1 = (3, -7, 6, |, 15) - 3(1, 3, 4, |, 9) = (0, -10, -6, |, 6)
\]

Now the matrix looks like this:
\[
\begin{pmatrix}
1 & 3 & 4 & | & 9 \\
0 & -1 & 9 & | & 18 \\
0 & -10 & -6 & | & 6
\end{pmatrix}
\]

Eliminate \(x_2\) from Row 3 (R3):


\[
R3 = R3 + 10R2 = (0, -10, -6, |, 6) + 10(0, -1, 9, |, 18) = (0, 0, 84, |, 96)
\]

Now the matrix looks like this:
\[
\begin{pmatrix}
1 & 3 & 4 & | & 9 \\
0 & -1 & 9 & | & 18 \\
0 & 0 & 1 & | & 1
\end{pmatrix}
\]

Step 3:
Back-substitution to find the solutions

From the third row:
\[
x_3 = 1
\]

Substitute \(x_3 = 1\) into the second row:
\[
- x_2 + 9x_3 = 18 \implies - x_2 + 9(1) = 18 \implies - x_2 + 9 = 18 \implies - x_2 = 9 \implies x_2 = -9
\]

Substitute \(x_2 = -9\) and \(x_3 = 1\) into the first row:
\[
x_1 + 3(-9) + 4(1) = 9 \implies x_1 - 27 + 4 = 9 \implies x_1 - 23 = 9 \implies x_1 = 32
\]

Final Solution:


\[
x_1 = 32, \quad x_2 = -9, \quad x_3 = 1
\]
Apakah jawabannya membantu Anda?Silakan beri nilai! Terima kasih

Pertanyaan Panas lebih lebih

nilai fungsi dari f(x)=2sin x*cos x , jika x=45° adalah ....

Jika suku pertama dalam deret aritmatika adalah -1 dan suku ke-6 adalah 7, berapa nilai suku ke-9 dalam deret tersebut?

4//5quad(4xx5)/(4xx5)=(20)/(20)=

i. Sederhanakan. " a. "2sqrt28+sqrt20-sqrt125

Diketahui kerseling 34m . Hitunglah selisih Panjang dan lebar lapangan tersebut. Hifunglah nilai dari x_(1)xxx_(2) . 3x^(2)-15 x+18=0 memiliki akar-ak

Bilangan 0,000000024 yang 5 points dituliskan dalam notasi ilmiah adalah . . . . 24 xx109 0,2xx10-7 24 xx10-9 2,4xx10-8 2,4xx108

lika diberikan Matriks A=([2,-2],[7,5]) . matriks B=([-3,7,1],[2,0,5]) matriks C=([3,-1],[-5,0],[9,4]) dan matriks D=([5,1],[-4,3],[0,7]) Tentukanlah

Penyelesaian persamaan kuadrat X^(2)+13x_(-)+30=0 adalah...

Hasil dari (2)/(3)xx(7)/(3)+(1)/(3)=

PR (1) (f(x))/(g(x))=(x+5)/(x^(2)+x-20) 2) (F(x))/(g(x))=(-x^(2)+4)/(2-x)

lim_(e^(-23))(x^(2)+5x+6)/(6e+2) =

Tentukan fungi imvurs thari a) Rx+x^(2)-4x+9 b) (x)=sqrt(-3x-5)

Titik A berjarak satuan terhadap sumbu x . 6 2 -6 -2

Hasil dari (2)/(5^(-2)) adalah.... A. -(1)/(5) C. -50 B. -(2)/(25) D. 50

Bentuk logaritma dari 2^(4)=64 adalah.... Sebutkan ciri khas dari Sistem Persamaan Linear Tiga Varibel!